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Abstract

A unit cell of a specified shape under specified loading conditions has been investigated under extension and

compression to get insight into microstructural mechanisms controlling macroscopic behavior of particulate polymeric

composites. A variety of the boundary-value problems in the framework of large deformations have been solved. The

comparative analysis has been carried out aimed at the clarifying the difference between the extended and compressed

states of structural cells. The calculations have corroborated greater strength of cells under compression that agree well

with common practice. It was established that, in the cells under compression, the separation of the matrix from the

inclusion takes place instantly as with the loss of stability in contrast to quiet evolution in extension. It was found out

that pore growth in cells under compression is four to five times lesser than under extension. � 2001 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Recently a specified structural unit cell for particulate elastomeric composites has been proposed and
explored under tensile loading (Moshev and Kozhevnikova, 1997, 2000). The predictive capabilities of this
cell have proved to be rather promising. So it seemed expedient to study in the like manner the behavior of
the cell under compressive loading, since experience reveals that the response of particulate composites to
compression differs considerably from that to extension. Elucidation of this difference on a microscale level
seems to be of interest both from theoretical and practical points of view. This paper presents the results of
such a comparative microstructural analysis with primary emphasis upon compression peculiar features. A
transformation of the microstructural description into a continual one is offered and explored as a step
bridging discrete and continuous representations the latter required by the design practice.
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2. Theoretical background

2.1. Model cell geometry and boundary conditions

A general scheme of the accepted structural cell is shown in Fig. 1a. It represents an elastomeric cylinder
(matrix) with a solid spherical inclusion (filler particle) at the center. The height, L, of the cylinder is equal
to its diameter, D. A constant value, namely 2 cm, was assigned to the diameter of the cylinder and its
height.

The cell is loaded uniaxially either by tension or by compression under zero external pressure. The
geometry of the boundary conditions has been chosen so that, under deformation, the cell remained well
compacted with other cells (Fig. 1b). Meeting this requirement makes ends of the cell to retain plane shape
with the radial displacements not restrained and to keep the lateral surface as cylindrical one. This geo-
metry conforms to the state of the cell located inside the close packing.

A remarkable feature characterizes the geometry adopted. Within the ensemble of the closely packed
cells (Fig. 1b), the maximum filler volume is reached when the radii of the inclusions touch both the lateral

Nomenclature

D diameter of the structural cell
Em Young’s modulus of the matrix
F tension or compression force applied to the cell
G, B parameters in the equation for the elastic potential of the matrix material
L height of the structural cell
R radius of the spherical inclusion
S debonded surface on the inclusion
U elastic potential of the neo-Hookean matrix material
W displacement of the top end of the cell relative the bottom one
C Cauchi–Green deformation tensor
g unity tensor
P the second Piola–Kirchoff stress tensor
I1, I3 the first and the third invariants of the Cauchi–Green deformation tensor
Ta adhesive bond fracture energy per unit of bonded surface of the inclusion
Td cohesive bond fracture energy per unit of bonded surface of the inclusion
Um elastic energy stored in the matrix volume of the cell
eij component of the microstrain tensor within the matrix volume
e1 maximum principal deformation in the matrix volume (e1 ¼ k1 � 1)
ðe1Þb breaking strain of the elastomeric matrix
sij component of the true microstress within the matrix volume
s0 mean stress in the matrix s0 ¼ ðs11 þ s22 þ s33Þ=3
k1 maximum microstretch within the matrix volume
ðs0Þb dilation strength of the matrix
ez deformation of the cell (e ¼ W =L)
eb breaking strain of the cell
rij true stress component applied to the surface of the cell
u volume fraction of the inclusion in the cell, u ¼ 16=3ðR=DÞ3
rz mean normal stress applied to the end of the cell
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boundary and the ends of the cells. This volume is found to be equal to 0.607. This value chanced to be
close to the ultimate volume filling, 0.605 (Chong et al., 1971; Farris, 1968) experimentally established in
studies of suspensions filled with uniformly sized spherical particles. 2 This suggested that the behavior of a
single structural cell might be thought to reflect rather adequately the property-concentration relations of
realistic random system. This assumption was confirmed by Moshev and Kozhevnikova (1997, 2000). So
this model has been accepted for studying its mechanical behavior under compression as well.

The tensile behavior of the cell broadly outlined depends on the initial state of the interface bond. If the
sphere is supposed to be bonded to the matrix, a common mechanical evolution of the cell may be presented
as it is shown in Fig. 2. During extension, this state is retained for some time (Fig. 2b). However, when the
intensity of the stress–strain state within the matrix reaches some critical magnitude, the cell looses the
capability to keep its continuity. For highly resilient matrices, it is the detachment of the matrix from
the sphere that most often takes place as a primary damage event (Fig. 2c). An empty vacuole is formed
above the pole zones of the sphere. It is supposed that matrix separation proceeds from the both poles of
the inclusion in a similar manner. However, the cell might not be regarded as failed after the debond has
occurred. It continues to resist extension although with a significantly reduced stiffness (Fig. 2d) until
secondary damage comes about. This one is the break-down of the most strained matrix belt around the
equator of the sphere (Fig. 2e). The secondary damage means the final failure of the cell. Though, another
initial bond state originating matrix separation may be supposed, that, where the precursor debond patch is
imposed at the pole of the inclusion. This case basically does not change the sequence of events shown in
Fig. 2a–d.

Turning from the extension of the structural cell to its compression changes principally the pattern of its
plausible mechanical evolution (Fig. 2f–h). Obviously, the polar zones, contrary to the former case, now
must experience hydrostatic compression, while the equatorial region seems to be only slightly compressed.
The damage mechanism is not so clearly seen as in the extension case. Hence subsequent analysis of this
problem should be regarded as a largely speculative one. Nonetheless, some important points seem to be
evident. First, in contrast to extension, maximum compressive displacement is definitely restricted by the
height of the polar matrix width, determined by solid fraction volume. For moderate solid volume fraction
of 30% it equals merely 0.23 of the radius of the cell, while tensile displacements accompanied by vacuole
formation may be 10 times greater. Second, compressing polar matrix layer to zero width leads to a steep
rise in compressive stresses tending to infinity. Hence, this part of the matrix volume seems to be most ready

2 The value of 0.605 should not be identified with a well-known highest random packing density of 0.64 for uniform-sized spheres

(Scott, 1962; Haughtey and Beveridge, 1969). The latter case represents a fixed rigid structure unable to continuous damageless

deformation. In order to get deformable composition, the interparticle spaces should be somewhat increased, i.e., solid volume fraction

should be somewhat decreased. The sought-for degree of the minimal rarefaction for the highest packing has been just one established

experimentally by Chong et al. (1971).

Fig. 1. Scheme of (a) the structural cell and (b) its assumed packing.

V.V. Moshev, L.L. Kozhevnikova / International Journal of Solids and Structures 39 (2002) 449–465 451



for releasing accumulating elastic energy via some damage rearrangement. For instance, if a precursor
debond patch occurs at polar region, then a release of elastic energy of the matrix might be thought of in
form of the close debond spreading towards the equator as long as contact normal interfacial stresses
remain negative. Matrix separation from the inclusion at the equatorial zone, as shown in Fig. 2h, might
not be ruled out, as well. Some suggestions concerning conditions of the final failure of the cell under
compression will be discussed later on.

No frictional resistance is taken into account in the cases, where the detached matrix is forced to slide
along the inclusion surface.

2.2. Elastic properties of constituent materials

The approach adopted in this paper is purely elastic one. Only an equilibrium time-independent process
is examined. The matrix phase is represented by a slightly compressible elastomer characterized by the
elastic potential with two material parameters

U ¼ G=2ðI1 � 3Þ þ B=8ðI3 � 1Þ2:

Here the first item of the sum represents neo-Hookean elastic potential for incompressible material, where
I1 and I3 are the first and the third invariants of the Cauchy–Green deformation tensor, C . G is a material
constant, whose value is taken equal to 0.1 MPa, which corresponds to the shear modulus at small de-
formations. B is a second material constant that may be regarded as a bulk modulus at small deformations.
Its value is taken to be 5 MPa which corresponds to Poisson’s ratios about 0.49 that recently has been
established by Blatz and Kakavas (1993), who experimented on realistic elastomers, inevitably containing
small amounts of microscopic gas inclusions. The Young’s modulus defined by the above basic parameters
is equal to 0.298.

Fig. 2. Comparison of mechanical evolutions of the cell in tension ((a) initial; (b) extended before separation; (c) the same after

separation; (d) extended separated; (e) ruptured) and in compression ((f) initial, (g) compressed before separation, (h) the same after

separation).

452 V.V. Moshev, L.L. Kozhevnikova / International Journal of Solids and Structures 39 (2002) 449–465



The type of the neo-Hookean elastic potential adopted above is based on the approach developed and
reasoned soundly earlier by Rogovoy (1988) and Kozhevnikova et al. (1993) for a wide class of incom-
pressible and nearly incompressible elastomers.

State equation derived from Eq. (1) has the form

1

2
P ¼ g

�
� I3C

�1�G
2
þ B
4

I3ð � 1ÞI3C�1;

where P is the second Piola–Kirchoff stress tensor, g is the unity tensor.
The solid sphere is taken to be perfectly rigid.

2.3. Damage criteria in structural cells

2.3.1. Extension case
Knowledge of the stress–strain state in the volume of the cell together with the characteristics of con-

stituent materials, controlling damage appearance and evolution, is, clearly, the background for estab-
lishing the location and specificity of damage origination and evolution. It is assumed that the solid sphere
is not only perfectly rigid but also non-destructive. So matrix volume and sphere–matrix interface remain
the only vulnerable localities in the cell’s volume.

Available experimental data allow us to get more comprehensive idea about basic mechanisms of the
primary damage origination. Oberth and Bruenner (1965) observed that the separation of the matrix from
the filler during extension was always preceded by formation and growth of many closely spaced tiny
cavities within the matrix phase near the polar area of the inclusion, where the highest hydrostatic tension is
created. The thin membranes separating these cavities bursted with creation a debond patch transforming
thereupon into the open curvilinear crack propagating along the inclusion. When the matrix–sphere bond
was considerable the crack run in the interior of the matrix phase with a thin matrix layer remaining intact
on the surface of the sphere. Otherwise the crack divided the surface of the matrix from that of the sphere.

In actual composite materials precursor debonds patches of different sizes at different localities are
available, as well, due to natural imperfection of industrial fabrication. When these debonds occur in
critical points, they can also originate interfacial crack propagation.

Cho and Gent (1988) established that microcavitation in the matrix phase occurs, when its hydrostatic
tension reaches some definite value. They stated that cavities stem from unstable elastic expansion of
precursor tiny gas bubbles under the action of dilatant stress equal to 5=6 of the Young’s modulus. Pre-
cursor gas babbles were shown to be naturally inherent to rubbers manufactured in industry (Blatz and
Kakavas, 1993).

It follows from the above that critical hydrostatic tension ðs0Þb, for the matrix under consideration
(Em ¼ 0:298) is bound to be

ðs0Þb ¼ ð5=6Þ0:298 ¼ 0:248: ð1Þ

For the description of the crack propagation, Griffith’s approach was used, which postulates that the
debonded area will grow if the reduction in stored strain energy is equal to, or greater than, the energy, T,
required for debonding (Gent, 1980; Kendall, 1971). Hence, the quantitative value of T is to be somehow
determined.

It follows from the above, that there are two modes of the debond energy that should be specified. First,
it is tearing energy of the matrix, Td, that controls the crack propagation, when it occurs in the interior of
the matrix phase. Second, it is the adhesive debond energy, Ta, specifying matrix–sphere interaction.

Td value may be obtained from the paper by Gent and Tobias (1982), who investigated the correlation
between tearing energy and Young’s modulus of various rubbers. For hydrocarbon rubbers, this correla-
tion may be approximated as
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log10 Td ¼ 5:0� 0:50 log10 Em; ð2Þ

where Td is the threshold energy in J/m2 and Em is the Young’s modulus in Pa.
Remembering that in this study the Young’s modulus of the matrix is taken to be 0.298 MPa, we have

specified, by means of the above correlation, the threshold tear energy for the matrix equal to 150 J/m2.
Recall that this value is characteristic of the instance, when damage originates and progresses as a crack
within the matrix phase adjacent to the surface of the inclusion.

When the adhesive debond energy occurs to be greater than the cohesive one then the crack growth
evolution is controlled by the Td value. Otherwise it is the adhesive debond energy, Ta, that leads this
process of the crack separation. In other respects, both phenomena seem to be in perfect analogy.

After the crack separation has come to an end, the cell continues to resist extension with a reduced
stiffness until the failure comes about. It is assumed that this occurs, when the local principle deformation,
e1, in the most strained matrix belt around the equator zone reaches its break-down value, ðe1Þb, inherent in
the rubber under consideration (Fig. 2d).

2.3.2. Compression case
The cell’s evolution under compression (Fig. 2f–h) reduces to squashing the matrix polar layers by the

approaching cylindrical ends. It suggests that the negative hydrostatic stresses above the polar zone in the
course of compression of the cell steeply grow tending to infinity. Hence the matrix cavitation and open
crack formation in this conditions become impossible. On the other hand, just this locality seems to
concentrate the most part of the elastic energy stored in the matrix phase. Under such conditions, precursor
debond patches occurring at polar zones appear to be realistic sources of damage origination and evolution.
If so, the precursor debond, regarded as a closed crack, begin spreading by matrix sliding along the surface
of the inclusion with the plausible matrix separation only nearly the equatorial region, where positive
normal stresses seem to be feasible.

It is assumed that, quantitatively, the growth of the original debond patch is controlled by the value of
the adhesive Ta value, which is taken to be the same as that for the extension case, since this magnitude
cannot be related to the mode of the energy formation in the interior of the matrix.

The mechanism of the final failure of the cell under compression looks more complicated than under
extension. It is clear that, whether the interface debond takes place or not, the resistance of the cell to
compression, in the framework of the problem under consideration, eventually tends to infinity. Obviously,
the infinite resistance cannot be real phenomenon. It may be suggested that, in actual composite structures,
considerable increase in compressive resistance should inevitably lead to the loss of the longitudinal sta-
bility of the cell, this event being beyond the scope of this study. Here the calculations of the compression
curves will be stopped after beginning the steep increase in cell’s resistance.

2.4. Matrix debonding evolution

Debond, arisen either from cavitation or from a precursor patch, starts spreading as a crack, either in
open or in closed state, when the increment, dUm, of the energy stored in the matrix during cell’s loading
reaches some definite magnitude, T, sufficient for creation a newly debonded interface area, dS.

This condition is usually expressed as follows:

dUm=dS ¼ T ; ð3Þ

where T is the unit interface debond energy, determining the strength of the interfacial bond.
It is clear from the foregoing discussion that the magnitude T depends on the mode of the primary

damage. If the crack propagates in the interior of the matrix, then T is identified with the proper tearing
energy of the rubber matrix, Td. If the crack originates from the precursor interface debond, T is identified
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with the energy of the adhesive debonding, Ta. It should be remembered that Td is a constant determined by
the Em value according to condition (2), while Ta is an independent magnitude ranging from zero to the
magnitudes greater then Td.

If Ta happens to be greater than Td, then it is Td magnitude that controls the process of the crack
propagation. Otherwise, two modes of primary damage may be postulated. When the adhesive bond is
perfect, the damage begins with the microcavitation ending in the primary interface debond patch for-
mation growing under Ta control. When a random precursor patch near the polar zone is the source of the
primary damage, then crack propagation proceeds under Ta value without preliminary microcavitation
phenomenon. It follows from the above that in all instances Td value determines the highest effort at which
primary damage can occurs, other conditions being held unchanged.

Examine, as an example, the evolution of crack stemming from small precursor debond patch at the
polar region. Let the adhesive debond energy Ta be a controlling parameter.

The current strain energy of the cell, Um, is determined both by the cell deformation, ez ¼ W =L, and the
value of the current debonded area, S,

Um ¼ f1ðez; SÞ: ð4Þ
The condition (3) may now be rewritten as

Ta ¼ oðf1ðez; SÞÞ=oS ¼ f2ðez; SÞ: ð5Þ
Taking Ta to be a constant magnitude during the entire process of the matrix debonding from S ¼ 0 to
S ¼ Smax, opens an opportunity for establishing a definite correlation between ez and S.

The preliminary calculations for 30% solid volume fraction have shown that the area of the postulated
precursor debond, giving rise to crack origination, should be taken about 0.05 of the total interfacial area
for triggering crack propagation according to Griffith’s approach. The response of the cell, having such
initial debond patch is nearly the same as that of the perfectly bonded cell.

The response, F, of the cell in extension or compression is also a definite function of both the current
values ez and S

F ¼ f3ðez; SÞ: ð6Þ
Having obtained the relation between e and S from Eq. (5), one can calculate tensile curve, F vs. ez, from
Eq. (6) that is characteristic of the cell undergoing matrix–sphere debonding.

2.5. Calculation procedure

The detailed description of the calculation method is published elsewhere (Kozhevnikova et al., 1993).
For the solution of the boundary value problem, a functional of a special form is offered and used

HeðH ; uÞ ¼
Z
V0

AHðI3
�

� 1Þ � A2ða=2ÞH 2 þ W1ðI1Þ þ ðG=4Þ ðI3ð � 1Þ � AaHÞ2 � q0Ku
�
dV0 �

Z
S0p

pudS0p ;

ð7Þ

where A ¼ BG=ð2ðB� GÞÞ and a ¼ 4=B; u is the displacement vector; V0 is the undeformed volume with
volume forces, K , density, q0, and the surface S0p , where forces, p, are applied; AH ¼ r is the normalized
quantity of r.

The variations of this functional in H and u lead to known variational equations of continuum me-
chanics for large deformations.

The finite element method was used for calculations. A typical sketch of the adopted finite element grid is
shown in Fig. 3 for a solid volume fraction of 30%. Considering the geometry of the cell, a condensation of
elements near the inclusion was performed.
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Displacement vector components and function H were approximated by the shape function Wp and UN :
Then, the displacements become up ¼ Wnunp and the function H ¼ UNHN , where unp is the value of the vector
component up in n-node, while HN is the H value in N-node.

A program was developed for the incremental load procedure, using triangular cylindrical finite elements
with a square approximation to the displacement field, and linear functions H. In contact zones the con-
dition for non-penetration was introduced.

Rogovoy (1988) proved the validity of the numerical results obtained with the calculation scheme
adopted up earlier.

3. Microstress and microstrain distributions in the matrix phase of cells under extension and compression

3.1. Representation of the microscopic stress–strain state

In the framework of this paper, the distribution of stresses and strains within the matrix is defined solely
by cell’s axial deformation, ez: The external pressure is taken to be zero. It seems reasonable to examine
separately the bonded, partly debonded and completely debonded states of the cell.

According to previous discussion, two representative quantities of the stress–strain state of the rubbery
matrix are chosen for further analysis: the maximum principle strain, e1, as an invariant characterizing the
intensity of deformation and the mean stress, s0, as a measure of hydrostatic intensity of stress state. In this
paper the value of e1 is presented as e1 ¼ k1 � 1, where k1 is the maximum principal stretch. The value of s0
is the mean of three principal true stresses.

The quantitative data presented in the subsequent analysis should be regarded as illustrations of the
phenomenon under discussion. They have been obtained from calculations for a cell containing 30% by
volume solid phase, extended or compressed to 10%. The filler concentration chosen, dividing the low and
high filler volume domains, seems to be the most appropriate for general examination.

Fig. 3. Sketch of the finite element greed adopted for calculations for a filler volume fraction of 30%.

456 V.V. Moshev, L.L. Kozhevnikova / International Journal of Solids and Structures 39 (2002) 449–465



Figures will present e1 and s0 distributions for imposed conditions as shadow patterns: the higher the
level of the strain or stress the lighter the shadow. Such patterns are to be regarded primarily as qualitative
estimations for getting general orientation, although most important numerical data needed for analysis are
indicated in the appropriate localities.

3.2. Bonded cell

Fig. 4 presents e1 and s0 distributions under extension and compression. Strain patterns for extension are
rather close to each other. The most strained localities are situated above the poles of the sphere and along
its surface at an angle of about 45� with respect to the z-axis direction. For the adopted 30% volume filling,
the maximum strains in the matrix are about 0.5 that is four to five times greater than the proper strain of
the cell.

However, patterns of hydrostatic stress distributions depict considerable difference. High tensile hy-
drostatic stresses of about þ0:2 MPa at polar zones, characteristic of extension, give place to still higher
(absolute) mean compressive stresses of about �0.32 MPa under compression. At equatorial zones, hy-
drostatic compressive stresses of about �0.1 MPa under extension transform into moderate hydrostatic
tensile stresses of about þ0.05 MPa under compression.

Fig. 4. e1 and s0 distributions in extension and compression for the bonded cell’s state. White lines demarcate the regions of positive

and negative mean stresses.
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Fig. 4 gives a clear general idea about plausible sources and sites of the primary damage appearance.
Under extension, these are the pole, creating crack origination, and interface localities at an angle of 45�,
promoting crack propagation and vacuole opening. Under compression, it is the interface, where the matrix
debond origination seems to be the most probable. In contrast to extension, this process may be realized
solely as the matrix–sphere tangential disconnection followed by sliding of the torn matrix along the surface
of the inclusion.

3.3. Partly debonded cell

A general estimation of the strain and stress distributions in partly debonded cells under extension and
compression can be perceived from Fig. 5. The input condition for calculation ðTa ¼ 100 J/m2) has been
adjusted so that the crack opening would be well outlined at the imposed 10% straining.

Under extension, the matrix detached from the polar zone forms a vacuole cavity drastically rearranging,
stress distributions as compared with the extension case of Fig. 4. A withdrawn vault-like part of the
matrix, that before exhibited the highest strains and tensile hydrostatic stresses, now experiences insig-
nificant compression and is weakly strained, whereas the highest strains and stresses are moved to the stress
concentration point––the tip of the crack.

Fig. 5. e1 and s0 distributions in extension and compression for partly debonded cell. Zone of the matrix interface sliding is labeled by

the white line with the end at point A.
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Clearly, the finite element approach can provide only approximate estimations in this locality. Never-
theless, it gives some insight into the order of magnitude of the strains computed for the grid adopted.
Calculated coefficients of the strain concentration are of the order of several tens.

Debonding under compression, postulated to originate from the precursor debond patch, also entails
considerable change in the stress and strain distributions as compared with the compression case of Fig. 4:
compressive mean stresses and strains are reduced considerably due to possibility of matrix sliding along
the debonded interface. However a sharp outburst of stresses and strains appears in the point A dividing
debonded area (white line) from the bonded one.

The e1 and s0 ‘‘compressive’’ distributions in Fig. 5 differ greatly from the corresponding ‘‘extensive’’
ones. A large volume of minor tensile hydrostatic stresses around vacuole under extension transforms into a
poreless volume under hydrostatic compression. Low strains, characteristic of extension case, are con-
trasted with high strains for a compression one. The stress and strain concentration in the point of sin-
gularity under compression seems to be more intensive than under extension.

3.4. Debonded cell

After the debond propagation, during extension or compression, have reached the equator of the in-
clusion, the cell may be judged as fully debonded. Typical strain and stress distributions in completely
debonded cells are exemplified in Fig. 6. Cavitations occur both under extension and compression. In the
first instant, cavity is shaped as a vacuole, in the second as an empty belt around equator. Singular points

Fig. 6. e1 and s0 distributions in extension and compression for the debonded cell’s state. No positive s0 exists in compression.
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disappear and with them the stress and strain concentrations. This is in a good agreement with the results of
Dekkers and Heikens (1985) for a rigid sphere embedded into an infinite polymeric matrix. In extension, the
strain magnification factor at the equatorial matrix belt now turns out to be about two and in compression
at polar zone about three.

The general pattern of the stress and strain distributions of Fig. 6, as compared with the case of the
partial debond (Fig. 5), remains essentially the same. Under extension, the hydrostatic stresses are positive
in bulk with insignificant compression in the dome above the vacuole cavity. Under compression, the entire
matrix volume experiences hydrostatic compression with a considerable increase at the polar zone.

4. Effective characteristics of cells

The foregoing analysis has been focused on the internal stress and strain states in structural cells under
extension and compression. A transformation of structural notions and relations, used in solutions of
boundary-value problems, into corresponding macroscopic characteristics of cells, now regarded as con-
tinuum formations, is of great theoretical and practical importance.

For this, a substitution of the microstresses, sij, and microstrains, eij, that have been used, say, for inside-
cell analysis, for macroscopic stresses, rij, and strains, eij, of a larger scale level, i.e., that of the cell
characteristic size, is needed. This allows the cell to be presented as some uniform material unit.

Based upon the assumed boundary conditions for cells, the normal nonuniform microstresses sz and sr at
the ends and lateral area of the cell may now be substituted for their averaged values rz and rr that may be
regarded as common sense stresses on the boundary of a continualized material unit. In the following
analysis rz and rr will be presented as values related to the current cross-section of the cell model. In
calculations, the relation between imposed axial displacement and searched-for radial displacement is
adjusted so that the averaged rr value reduces to zero. The tensile strain of the cell, ez, is calculated simply
as the ratio between displacement of the ends,W, and the initial height of the cell, L. Hence, the notion of
the effective Young’s modulus of the cell may be easily formulated as a ratio between rz and ez at adopted
zero external pressure.

The macroscopic behavior of the cell model will be represented by its stress–strain and volume–strain
curves. A particular form of these relations is a function of a number of the input parameters that are
adopted as follows: u ¼ 0:3, G ¼ 0:1 MPa, B ¼ 5:0 MPa, ðe1Þb ¼ 2:0. It is assumed that the interface
separation (under extension or compression) originates from a small precursor debond patch, located at
polar zone, with a crack propagating by the adhesive debond mechanism with Ta ¼ 100 J/m2.

4.1. Tensile and compression curves of the cell model

Tensile curve, rz � ez, of a cell calculated according the scheme adopted above is depicted in Fig. 7. The
initial response of the cell both to extension and compression is characterized by the same initial modulus
corresponding to the state of perfect bond. It is seen that detachment under extension starts at rz ¼ 0:10
MPa (ez ¼ 0:11), whereas that under compression at rz ¼ �0:17 MPa (ez ¼ �0:18). This calculation
demonstrates a well-known experimental fact that strength of particulate composites under compression is
usually essentially higher than that under extension.

Under extension, after the onset of the detachment has happened, a steep drop the stiffness of the cell
takes place. However, the initial crack evolution diminishes the energy stored in the matrix to such a degree
that additive energy input is needed for continuation of the crack propagation. This input is provided by
the ever-continuing cell’s extension. The greater becomes the separated zone, the lower becomes the rigidity
of the cell, and the slower gaining energy needed for crack propagation until complete debond is achieved.
Then the stiffness of the cell becomes stabilized, but at lower level as compared with the initial one.
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Under extension, the cell breaks down, when the maximum principle strain of the matrix at the equator
reaches the breaking value equal to 2.0, as adopted above.

Contrary to extension, the energy accumulated in compression before start of the crack propagation has
proved to be quite sufficient for complete debonding the matrix from the sphere without the need in the
accessory outer energy input. So this transition might be regarded as an instant event.

With ever-continuing compression, a new increase in resistance starts but with the stiffness characteristic
of the fully debonded state. Nevertheless, the boundary conditions inevitably lead to the unbounded in-
creasing the resistance of the cell. The failure of the cell under strong compressive loading most likely takes
the form of the loss of elastic stability with the violation the boundary conditions in the adopted modelling.
The establishment of the strain at which the loss of stability comes about is beyond the scope of this paper.
In our case, calculations have been stopped, when steep increase in the resistance of the cell came about.

Considerable distinctions between extension and compression curves for cells containing various solid
volume fractions are clearly seen in Fig. 8 (for bonded systems) and Fig. 9 (for debonded from the outset
ones). The stiffness of the bonded cells increases with filler volume fraction both in extension and com-
pression. This is not so in the case of debonded cells, where the stiffness diminishes with filler volume
fraction under extension, but keeps increasing under compression.

4.2. Volume changes in extension and compression

Difference in the location and shape of pores appearing under extension and compression is depicted in
Fig. 6. An example of volume changes accompanying extension and compression of the cell with the 30%
filler volume is shown in Fig. 10. While the cell remains in the bonded state the volume changes with a good
approximation may be neglected both for extension and compression. After the separation has occurred
under extension, pore volume grows monotonously tending to linearity. Nothing impedes volume growth
until failure occurs. In our example, volume increase reaches 0.16 by the time of failure of the cell. Under
compression, volume increase, in contrast, takes the form of a stepwise jump transferring at once the system
from the complete bond to the complete debond with the following quiet volume increase on further
compression though with a lesser volume increment.

Maximum volume changes exhibit completely debonded cells. Fig. 11 demonstrates volume changes of
such cells under extension and compression at various filler volume fractions. Here again considerable

Fig. 7. rz � ez relations for extension and compression at 30% filler fraction volume.
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distinction between the response of the cells to the mode of loading is observed. At the same strains, volume
changes under extension are considerably higher than those under compression. The growth of vacuoles in
the former case is not restrained and increases with filler volume fraction. In contrast, compression impedes
pore formation due to the specific boundary conditions (buckling excluded) and restriction in the axial
displacement. Moreover, when the filler volume fraction becomes more than 0.4, ultimate pore volume
starts to diminish tending to zero at the radius of inclusion equal to the radius of the cell’s cylinder.

Fig. 8. Tensile and compression curves for bonded cells at various filler volume fractions indicated near the curves.

Fig. 9. Tensile and compression curves for debonded cells at various filler volume fractions indicated near the curves.
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5. Discussion and conclusions

A unit cell of a specified shape under specified loading conditions has been investigated under extension
and compression to get insight into microstructural mechanisms controlling macroscopic behavior of
particulate polymeric composites. A variety of the boundary-value problems in the framework of large
deformations have been solved. The comparative analysis has been carried out aimed at the clarifying of the
difference between the extended and compressed states of structural cells.

Natural submicroscopic imperfections of the unit structural cells are considered as the root sources of
the primary microdamage origination. These are tiny gas inclusions inherent in elastomers and virgin

Fig. 10. Volume change in extension and compression at 30% filler fraction volume.

Fig. 11. Volume changes of the debonded cells in extension and compression at various filler volume fractions indicated near the

curves.
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debond patches of various sizes and localities at the rubber–sphere interface. The role of the latter ones,
localized at the most vulnerable polar zone of the structural cell, is demonstrated.

The establishment and analysis of the microstress and microstrain patterns within the matrix phase and
along the interface of the cell in bonded, partly bonded and debonded states help to understand some of
macroscopic peculiarities incident to extension and compression of composites.

It is known from experience that the strength of particulate composites under compression is commonly
higher than that under extension. In modeling, the same result has been obtained (points A and B in Fig. 7).
The calculations have shown that, under compression, an essentially higher strain energy is required for
strating crack propagation of the precursor debonds according to Griffith’s postulate. This automatically
leads to higher critical stresses in comparison with the extension case.

In contrast to the smooth prolonged separation process during extension of the cell, the detachment of
the matrix under compression occurs instantaneously. It may be safely suggested that this distinction is due
to the accumulation of the higher stored elastic energy in the matrix phase, prior to the debond onset,
sufficient for complete detachment of the matrix from the sphere, at least for the particular case under
consideration.

While failure of the cell in extension depends on the breaking strain of the matrix phase that, in its own,
varies over a wide range from about 100% to 1000%, compressive strains are strictly determined by the
polar layer widths in the structural cell, which, for instance, for 30% solid volume fracture is nothing more
than 0.234. Clearly, failure under compression must somehow precede reaching this limiting value. The
most likely mechanism of the failure in this case is the loss of the longitudinal elastic stability, a phe-
nomenon going beyond the scope of this work.

Quantitative data on pore forming in the cells under compression are obtained. It was found out that
pore growth in cells under compression is four to five times lesser than under extension that is in qualitative
agreement with the experience.
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